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Abstract. The coordinate-free analysis developed in our earlier paper is used to provide a 
simplified proof of the Bazley inequalities for establishing lower bounds to the eigenvalues 
of atomic Hamiltonians. It is then explained how Bazley lower bounds enable one to get 
other lower bounds to eigenvalues without using empirical values of higher eigenvalues. 

1. Introduction 

Continuing the work of Sharma and co-workers (Shanna and Rebelo 1973a, b, 1975, 
Sharma and SriRankanathan 1975) we now present simplified proofs of propositions 
leading to lower bounds of atomic Hamiltonians. We then show how Bazley (1961) 
bounds can be used to obtain better lower bounds on a purely theoretical basis by using 
theformulae of Stevenson and Crawford (1938), Weinstein (1932) and Temple (1928). 

2. Formalities 

We use notations and definitions established in our earlier work (Sharma and SnRan- 
kanathan 1975, to be referred to as I): these we now recapitulate for the convenience of 
the reader. 

Let 2 be a Hilbert space over the real or complex field. Let A be a self-adjoint 
operator on 2; it is not assumed that A is bounded. We shall denote the domain of A by 
BA and the spectrum of A by SPA. We shall say that the spectrum of A is of type H if 
SPA is bounded below, the lower part of the spectrum is purely discrete, and the first N 
Points of the spectrum ordered to form an increasing enumeration have finite multi- 
plicities (here N is either a positive integer or the cardinality KO of the set of positive 
integers). We shall denote the eigenvalues in this enumeration by h f and the corres; 
Ponding multiplicity by m:. Let E: be the orthogonal projection on the eigenspace 8, 

to the eigenvalue A i ,  noting that the dimension of S: is m, . We denote the 
Oaogonal complement of e,= Sp by 8: and the orthogonal projection on S: by E?. 
we have thus the following decompositions of X and the identity operator I on 

A 

1=1 

889 
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For n S N  we define 
n 

F$= EA 
i = l  

and the image of F t  is a subspace which we denote by gt. We denote the dimension of 

5: by d:; clearly 

A d ; f =  m i .  
i =  1 

In our treatment eigenvalues are arranged to form an increasing enumeration and 
each eigenvalue is counted just once. However, people using coordinate-dependent 
treatments find it convenient to use an enumeration in which an eigenvalue A, of 
multiplicity m, is counted mi times. We shall call this alternative enumeration the 
primed enumeration and eigenvalues in this enumeration will carry a prime each. For a 
given j e  Z+ the two enumerations are related by 

A; = A, 

where i is the smallest integer for which j G di. For a given i there are m, different values 
of j for which the above relation holds and these values of j are d,-,+l, 
di-l + 2 ,  . . . , d, - 1, d,. The primed enumeration from the point of view of coordinate- 
free analysis is wasteful and clumsy; nevertheless we use this to establish contact with 
the classical formulation. 

It is usual to define a partial ordering of symmetric operators on X in the following 
way: we define 

Ai d A2 

if and only if gA1 c and 

( 4  A,u)S(u, A A  v u  E BA1 

where ( * , ) is the positive definite Hermitian form on X. 

A can be written as a sum of two self-adjoint operators B and C, thus 
We say that a self-adjoint operator A on 2 is atomic if (i) SpA is of type Hand (ii) 

A = B + C  (2.1) 

where B is a self-adjoint operator whose spectrum is completely known and is of WeH 
and Cis a strictly positive self-adjoint operator. It follows from the debition of the sum 
of two operators that 

gA=aBnBa, (2 .2)  

whence 
9* c 9 B .  (2.3) 

Thus A and B satisfy the conditions set out in proposition 6.2 of 1. It foliOws 
immediately from that proposition that the eigenvalues of B are lower bounds to 
eigenvalues of A, but these bounds are usually not very good. The method of BazleY 
(1961) provides better bounds by generating a sequence of intermediate operators 
which lie between A and B and in the limit converge to A and it is possible to compute 
exactly the eigenvalues of the intermediate operators which provide lower bounds to 
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appropriate eigenvalues of A. The method is sometimes described as the intermediate 
problem of Aronszajn (1952). 

Since c is Strictly positive, both and C l  are well defined (Kat0 1966) and 

gdc %Y2, c(%) = 9~-1 and C’(9dc-i) = gC. 

In what follows it is assumed that 

5: c gc n gc-l (2.4) 

3, The main results of this work 

propsilion 3.1. (Aronszajn 1952) Let P,(c BA) be an n dimensional subspace of a 
Hilbert space Z. Let P, be the orthogonal projection on.9,. Let A be an atomic 
self-adjoint operator on X having the decomposition described in 8 2. Let 

A, = B + C’/2PnC1’2. (3.1) 

B S A , S A  in (3.2) 

Then 

Proof. For any U E gA 

(u,A,u)=(u, Bu)+(u, C1/2PnC1’2u) = ( U ,  Bu>+(P,C’/~U, PnC1”u) 

= ( U ,  B~)-i-))P,C*’~u1)2. (3.3) 

o S ~ ~ P n c 1 ’ 2 u ~ ~ 2 s ~ [ c ’ ~ 2 u j ~ 2 = ( c ’ ~ z u ,  c ’ /2u)=(u ,  CU). (3.4) 

But it is evident that 

Hence 

( U ,  Bu)<(u,  A ,u )S(u ,  Au) (3.5) 
which is equivalent to the desired result. 

Corollary 3.1.1. In the primed enumeration of eigenvalues the i th eigenvalue of A, lies 
between the ith eigenvalues of B and A. 

proof. Follows immediately from the proposition above and corollary 6.2.1 of I. (Note 
that it is not difficult to prove that A, is essentially self-adjoint.) 

Observation 3.1.1. If a sequence of subspaces 9, is constructed in such a way that 
$nCPn+l for all n and V,9,, = 2, then the ith eigenvalue of A,, in the primed 
enumeration will form a numerical sequence converging to the ith eigenvalue of A in a 
similar enumeration. 

0bWuation 3.1.2. Proposition 3.1 gives a formal procedure for finding better lower 
bounds to eigenvalues of A than those given by eigenvalues of B. But unless we can 

a procedure for determining the eigenvalues of A,, this procedure is quite 
useless. The next proposition tells us how for a particular choice of the subspaces 9, the 
‘%envalues of A, can be readily determined. 
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fioposition 3.2. (Bazley 1961) Let . d f = n .  Let P,,=c~’*(s~). k t  p,, be the 
orthogonal projection on P,,. Then S f  is invariant under B + C1/2Pnc1/2 ,  

proof. Let U E .9:. Clearly Bu E 9:. From the definition of P, it follows that there exists 
a U E Sf such that 

(3.6) c - 1 / 2 U  = p n y u  

U = c 1 f 2 P n c 1 / 2 u  E 9;. 
whence 

This completes the proof. 

Observation 3.2.1. With this particular definition A,, restricted to 9: is a self-adjoint 
operator on a finite dimensional space and because of the invariance established in the 
preceding proposition, the eigenvalues of the restriction are also the eigenvalues of fie 
unrestricted operator. Eigenvalues of a self-adjoint operator on a finite dimensional 
space can be readily determined. Thus we have an intermediate operator whose 
eigenvalues are easily determinable and which provide better lower bounds on the 
eigenvalues of A. 

4. Lower bounds of Stevenson and Crawford, Weinstein and Temple 

Proposition 4.1. (Stevenson and Crawford 1938). Let A be an atomic Hamiltonian. Let 
p be an upper bound to the ith eigenvalue hi of A satisfying 

i~ -h iSh i+l -p .  (4.1) 

Let unit vector U E gA and let 

a2=(u, (A -p)’u). 

Then p - a is a lower bound to hi. 

Proof. 

(4.2) 

(4.3) 

where the integral is over the spec.t” A(A) of A and is with respect to the spectral 
measure induced by A. It immediately follows that 

(4.4) 

which is the desired result. 

Corollary 4.1.1. (Weinstein 1932) Let the upper bound p and the vector 
proposition 4.1 satisfy 

in 

(4.5) 

(4.6) 

w =(ut AM). 

p-((u,  A ~ u ) - ~ ~ ) ~ ~ ~ G A ~ .  

Then 
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Roof. A straightforward computation of the lower bound given by the preceding 
pposition for this particular choice of p yields the desired result. 

Obse~afiOn 4.2.1. Both these lower bounds require a p which is less than or equal to 
+ ~ ~ + ~ ) / 2 .  Physicists usually get this number by using experimental values; this 

makes the lower bounds semi-empirical. By using the method of 0 3 it is possible to find 
lower bounds to both hi and Ai+l and the mean value of the two bounds may provide an 
upper bound which satisfies the requirements. One can make sure that this is so by 
ensuring that this mean value is greater than an upper bound found with the help of 
corollary 4.1.1 of I. 

proposition 4.2. (Temple 1928). Let A be an atomic Hamiltonian and let hi be its ith 
eigenvalue. Let unit vector U E BA and p E R satisfy 

(4.7) 

(4.8) 

Proof. From proposition 4.1 we have 

p -Us hi G p + U. 

v + p = p  (4.9) 

Noting that U depends on p and taking a given p C hi+l we find a p such that 

or 

(p - p ) 2  = 2. (4.10) 

Simple computation now yields 

(4.11) 

In forming the squares in equation (4.10) we have lost the information implicit in 
equation (4.9) that p is less than or equal top. We must therefore impose this condition 
on /L found from equation (4.11). It is easy to show that this condition implies that 
(4  Au) < p, for if we assume that (U, Au) > p with the help of the given condition we can 
readily deduce that 

(4.12) 

Which is clearly impossible. This justifies the necessity of one of the assumptions in (4.7). 
With the i~ given by equation (4.1 1) a computation of p -U  together with proposition 
4.1 finally yields Temple’s lower bound (4.8). It is interesting to note that it is not 
necessarythat(u, Au)>h ,  asassumedin(4.7), butif(u, Au)Ghi  then(u, Au)itselfisa 
lower bound to hi which is considerably better than the one given by Temple’s formula. 

Observation 4.2.1. Proposition 3.2 enables one to find a p satisfying condition (4.7), 
fius making it possible to calculate a purely theoretical lower bound with the help of 
Temple’s formula. 

(U, (A - P>’U> < 0 
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Observation 4.2.2. Purely theoretical lower bounds obtained with the help of any ofthe 
formulae of this section can themselves be used to obtain /L and p in starting iterative 
processes which progressively lead to increasingly better lower bounds. 

Obsemation 4.2.3. U E 9 A  does not necessarily imply that Au E BA. Whenever we use 
(U, A'u), this should be taken to mean llA~11~ which is well defined even if &$aA. 

5. Applications 

Let H be the quantum Hamiltonian for the motion of the two electrons in helium. It a n  
be written as 

H = h 0 I + I 0 h + HI2 = Ho + HI 2 (5.1) 
where h is the Hamiltonian for the motion of the electron in a hydrogen atom with the 
appropriate nuclear charge and H12 is the interelectronic interaction. If the underlying 
Hilbert space is taken to be the configuration space L2(R3) 0 L2(W3), on the dense linear 
manifold of infinitely differentiable functions in L2(R3), h, or more precisely its 
restriction to the manifold, is a linear second-order differential operator. The eigen- 
values and the eigenfunctions of h, and hence also of Ho, are exactly known from the 
theory of the hydrogen atom. In configuration space, H12 is simply l / r12  where 
r12 = llrl - r211, rl and r2 being the position vectors of the two electrons. H, Ho and H12 
satisfy all the properties required of A, B and C respectively in 00 2 and 3. In order to 
find the lower bounds to the energies of, say, the lowest three singlet S states of helium, 
one takes the eigenfunctions Q1, Q2 and (P3 of Ho belonging to the ls2 ' S ,  ls2s IS and 
ls3s 'S states. @ is the span of Ql, Q2 and Q3; r ip(@())  is the span of r f h ,  r f h  
and r:/22Q3. By the Gram-Schmidt process the last three vectors of the preceding 
sentence can be orthonormalized to yield orthonormal functions Pl, 9 2  and 93 which 
span the same subspace. Projection operator P3 on_r::2(Z@) is now given by 

3 

i =. 1 
P3 = 1 (Fi, *)Pi. 

It is now a simple computational exercise to determine the matrix of H3 restricted to 
9,". and the corresponding eigenvalues. This has already been done by Bazley (1959) 
by an essentially equivalent procedure; he obtained the values (in natural atomic units) 
-3.0637, -2.1655 and -2.0%. These provide lower bounds to the energies of the 
1s' 'S, ls2s 'S and ls3s 'S states of helium. 

As far as we know, no actual application of the method described in 3 4 has been 
made to obtain purely theoretical lower bounds with the help of the formulae of 
Stevenson and Crawford (1938), Weinstein (1932) and Temple (1928). However, the 
method is fairly straightforward and there can be little doubt that as the theory 
described here becomes better known and understood, it will become a normai ioo1 Of 

the trade for calculating lower bounds to eigenvalues of atomic Hamiltonians. 
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